Exponential Stability of Delayed Recurrent Neural Networks with Markovian Jumping Parameters
نویسندگان
چکیده
In this paper, the global exponential stability analysis problem is considered for a class of recurrent neural networks (RNNs) with time delays and Markovian jumping parameters. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, which are governed by a Markov process with discrete and finite state space. The purpose of the problem addressed is to derive some easy-to-test conditions such that the dynamics of the neural network is stochastically exponentially stable in the mean square, independent of the time delay. By employing a new Lyapunov-Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish the desired sufficient conditions, and therefore the global exponential stability in the mean square for the delayed RNNs can be easily checked by utilizing the numerically efficient Matlab LMI toolbox, and no tuning of parameters is required. A numerical example is exploited to show the usefulness of the derived LMI-based stability conditions.
منابع مشابه
Robust stability of fuzzy Markov type Cohen-Grossberg neural networks by delay decomposition approach
In this paper, we investigate the delay-dependent robust stability of fuzzy Cohen-Grossberg neural networks with Markovian jumping parameter and mixed time varying delays by delay decomposition method. A new Lyapunov-Krasovskii functional (LKF) is constructed by nonuniformly dividing discrete delay interval into multiple subinterval, and choosing proper functionals with different weighting matr...
متن کاملStochastic stability of discrete-time uncertain recurrent neural networks with Markovian jumping and time-varying delays
In this paper, the problemof robust exponential stability analysis of uncertain discrete-time recurrent neural networks withMarkovian jumping and time-varying delays is studied. By employing the Lyapunov functional and linear matrix inequality (LMI) approach, a new sufficient criterion is proposed for the global robust exponential stability of discrete-time recurrent neural networks which conta...
متن کاملSynchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control
In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...
متن کاملOn Complex Artificial Higher Order Neural Networks: Dealing with Stochasticity, Jumps and Delays
AbstrAct This chapter deals with the analysis problem of the global exponential stability for a general class of stochastic artificial higher order neural networks with multiple mixed time delays and Markovian jumping parameters. The mixed time delays under consideration comprise both the discrete time-varying delays and the distributed time-delays. The main purpose of this chapter is to establ...
متن کاملLMI Approach to Exponential Stability and Almost Sure Exponential Stability for Stochastic Fuzzy Markovian-Jumping Cohen-Grossberg Neural Networks with Nonlinear p-Laplace Diffusion
The robust exponential stability of delayed fuzzy Markovian-jumping Cohen-Grossberg neural networks (CGNNs) with nonlinear p-Laplace diffusion is studied. Fuzzy mathematical model brings a great difficulty in setting up LMI criteria for the stability, and stochastic functional differential equations model with nonlinear diffusion makes it harder. To study the stability of fuzzy CGNNs with diffu...
متن کامل